Vasilev et al. Beilstein J Org Chem. 2017;13:2902-2914. Halogen-containing thiazole orange analogues – new fluorogenic DNA stains.

Esta versión de nuestra web ya no se mantiene actualizada.
Por favor, visite nuestra web operativa en
https://quibio.web.uah.es/group/
y actualice sus enlaces.
¡Gracias!

Publicaciones > Vasilev et al

Halogen-containing thiazole orange analogues - new fluorogenic DNA stains.

1. Department of Pharmaceutical and Applied Organic Chemistry, Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1 James Bourchier Blvd., 1164 Sofia, Bulgaria.  2. Department of Organic Chemistry and Pharmacognosy, Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1 James Bourchier Blvd., 1164 Sofia, Bulgaria.  3. Departments of Organic and Physical Chemistry, University of Alcala, 28871-Alcala de Henares, Madrid, Spain.  4. Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.

Abstract

Novel asymmetric monomeric monomethine cyanine dyes 5a-d, which are analogues of the commercial dsDNA fluorescence binder thiazole orange (TO), have been synthesized. The synthesis was achieved by using a simple, efficient and environmetally benign synthetic procedure to obtain these cationic dyes in good to excellent yields. Interactions of the new derivatives of TO with dsDNA have been investigated by absorption and fluorescence spectroscopy. The longest wavelength absorption bands in the UV-vis spectra of the target compounds are in the range of 509-519 nm and these are characterized by high molar absorptivities (63000-91480 L.mol(-1).cm(-1)). All investigated dyes from the series are either not fluorescent or their fluorescence is quite low, but they become strongly fluorescent after binding to dsDNA. The influence of the substituents attached to the chromophores was investigated by combination of spectroscopic (UV-vis and fluorescence spectroscopy) and theoretical (DFT and TDDFT calculations) methods.