Archivo de la categoría: Sin categoría

Cary et al. J Cell Sci. 1994;107 ( Pt 6):1609-22. Vimentin’s tail interacts with actin-containing structures in vivo.

Esta versión de nuestra web ya no se mantiene actualizada.
Por favor, visite nuestra web operativa en
https://quibio.web.uah.es/group/
y actualice sus enlaces.
¡Gracias!

Publicaciones > Cary et al

Vimentin's tail interacts with actin-containing structures in vivo.

University of Colorado, Boulder 80309-0347.

Abstract

The tail domain of the intermediate filament (IF) protein vimentin is unnecessary for IF assembly in vitro. To study the role of vimentin's tail in vivo, we constructed a plasmid that directs the synthesis of a 'myc-tagged' version of the Xenopus vimentin-1 tail domain in bacteria. This polypeptide, mycVimTail, was purified to near homogeneity and injected into cultured Xenopus A6 cells. In these cells the tail polypeptide co-localized with actin even in the presence of cytochalasin. Two myc-tagged control polypeptides argue for the specificity of this interaction. First, a similarly myc-tagged lamin tail domain localizes to the nucleus, indicating that the presence of the myc tag did not itself confer the ability to co-localize with actin (Hennekes and Nigg (1994) J. Cell Sci. 107, 1019-1029). Second, a myc-tagged polypeptide with a molecular mass and net charge at physiological pH (i.e. -4) similar to that of the mycVimTail polypeptide, failed to show any tendency to associate with actin-containing structures, indicating that the interaction between mycVimTail and actin-containing structures was not due to a simple ionic association. Franke (1987; Cell Biol. Int. Rep. 11, 831) noted a similarity in the primary sequence between the tail of the type I keratin DG81A and vimentin. To test whether the DG81A tail interacted with actin-containing structures, we constructed and purified myc-tagged DG81A tail polypeptides. Unexpectedly, these keratin tail polypeptides were largely insoluble under physiological conditions and formed aggregates at the site of injection. While this insolubility made it difficult to determine if they associated with actin-containing structures, it does provide direct evidence that the tails of vimentin and DG81A differ dramatically in their physical properties. Our data suggest that vimentin's tail domain has a highly extended structure, binds to actin-containing structures and may mediate the interaction between vimentin filaments and microfilaments involved in the control of vimentin filament organization (Hollenbeck et al. (1989) J. Cell Sci. 92, 621; Tint et al. (1991) J. Cell Sci. 98, 375).

Dent et al. J Cell Biol. 1992;119(4):855-66. Host cell factors controlling vimentin organization in the Xenopus oocyte.

Esta versión de nuestra web ya no se mantiene actualizada.
Por favor, visite nuestra web operativa en
https://quibio.web.uah.es/group/
y actualice sus enlaces.
¡Gracias!

Publicaciones > Dent et al

Host cell factors controlling vimentin organization in the Xenopus oocyte.

Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309-034.

Abstract

To study vimentin filament organization in vivo we injected Xenopus oocytes, which have no significant vimentin system of their own, with in vitro-synthesized RNAs encoding Xenopus vimentins. Exogenous vimentins were localized primarily to the cytoplasmic surface of the nucleus and to the subplasma membrane "cortex." In the cortex of the animal hemisphere, wild-type vimentin forms punctate structures and short filaments. In contrast, long anastomosing vimentin filaments are formed in the vegetal hemisphere cortex. This asymmetry in the organization of exogenous vimentin is similar to that of the endogenous keratin system (Klymkowsky, M. W., L. A. Maynell, and A. G. Polson. 1987. Development (Camb.). 100:543-557), which suggests that the same cellular factors are responsible for both. Before germinal vesicle breakdown, in the initial stage of oocyte maturation, large vimentin and keratin filament bundles appear in the animal hemisphere. As maturation proceeds, keratin filaments fragment into soluble oligomers (Klymkowsky, M. W., L. A. Maynell, and C. Nislow. 1991. J. Cell Biol. 114:787-797), while vimentin filaments remain intact and vimentin is hyperphosphorylated. To examine the role of MPF kinase in the M-phase reorganization of vimentin we deleted the conserved proline of vimentin's single MPF-kinase site; this mutation had no apparent effect on the prophase or M-phase behavior of vimentin. In contrast, deletion of amino acids 19-68 or 18-61 of the NH2-terminal "head" domain produced proteins that formed extended filaments in the animal hemisphere of the prophase oocyte. We suggest that the animal hemisphere cortex of the prophase oocyte contains a factor that actively suppresses the formation of extended vimentin filaments through a direct interaction with vimentin's head domain. During maturation this "suppressor of extended filaments" appears to be inactivated, leading to the formation of an extended vimentin filament system.

Klymkowsky et al. Cell Motil Cytoskeleton. 1989;14(3):309-31. Functions of intermediate filaments.

Esta versión de nuestra web ya no se mantiene actualizada.
Por favor, visite nuestra web operativa en
https://quibio.web.uah.es/group/
y actualice sus enlaces.
¡Gracias!

Publicaciones > Klymkowsky et al

Functions of intermediate filaments.

Department of Molecular, Cellular & Developmental Biology, University of Colorado, Boulder 80309-0347.

Abstract

No hay resumen