Todas las entradas de: Javier Carreras Pérez Aradros

García-Marín et al. ChemMedChem. 2020;:. Pyrrolo[1,2-a]quinoxalines: Insulin Mimetics that Exhibit Potent and Selective Inhibition against Protein Tyrosine Phosphatase 1B.

Esta versión de nuestra web ya no se mantiene actualizada.
Por favor, visite nuestra web operativa en
https://quibio.web.uah.es/group/
y actualice sus enlaces.
¡Gracias!

Publicaciones > García-Marín et al

Pyrrolo[1,2-a]quinoxalines: Insulin Mimetics that Exhibit Potent and Selective Inhibition against Protein Tyrosine Phosphatase 1B.

1. Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805, Alcalá de Henares, Spain.  2. Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km. 9100, 28034, Madrid, Spain.  3. Instituto de Investigación Química Andrés M. del Río, Facultad de Farmacia, Universidad de Alcalá, 28805, Alcalá de Henares, Spain.  4. Departamento de Biología de Sistemas, Universidad de Alcalá, 28805, Alcalá de Henares, Spain.  5. Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo CEU, 28925, Alcorcón, Spain.  6. Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, 28805, Alcalá de Henares, Spain.

Abstract

PTP1B dephosphorylates insulin receptor and substrates to modulate glucose metabolism. This enzyme is a validated therapeutic target for type 2 diabetes, but no current drug candidates have completed clinical trials. Pyrrolo[1,2-a]quinoxalines substituted at positions C1-C4 and/or C7-C8 were found to be nontoxic to cells and good inhibitors in the low- to sub-micromolar range, with the 4-benzyl derivative being the most potent inhibitor (0.24 μm). Some analogues bearing chlorine atoms at C7 and/or C8 kept potency and showed good selectivity compared to TCPTP (selectivity index >40). The most potent inhibitors behaved as insulin mimetics by increasing glucose uptake. The 4-benzyl derivative inhibited insulin receptor substrate 1 and AKT phosphorylation. Molecular docking and molecular dynamics simulations supported a putative binding mode for these compounds to the allosteric α3/α6/α7 pocket, but inconsistent results in enzyme inhibition kinetics were obtained due to the high tendency of these inhibitors to form stable aggregates. Computational calculations supported the druggability of inhibitors.

Nuevo artículo, Nefrología 10.20

Esta versión de nuestra web ya no se mantiene actualizada.
Por favor, visite nuestra web operativa en
https://quibio.web.uah.es/group/
y actualice sus enlaces.
¡Gracias!
El sistema pHLIP como vehículo de microRNA en el rinón

Verónica Miguel, Carlos Rey, José Luis Aceña, Francisco Maqueda, Carlos Fernández-Hernando, Diego Rodríguez-Puyol, Juan J. Vaquero, Santiago Lamas

Nefrología, 2020
DOI: 10.1016/j.nefro.2020.05.007

Los microRNA (miRNA) son ARN endógenos de pequeño tamaño que regulan la expresión génica a través de la represión postranscripcional de sus ARN mensajeros diana. El estudio de los cambios en la expresión de ciertos miRNA en el riñón ha proporcionado evidencias sobre su papel patogénico y potencial terapéutico en nefrología. En esta revisión proponemos un abordaje de nanotecnología basado en la unión de análogos o inhibidores de miRNA formados por ácidos peptidonucleicos (PNA) a péptidos con una estructura transmembrana que es sensible a pH bajo, denominada pHLIP (del inglés pH [low] insertion peptide), apoyándonos en el concepto de que el pH acídico del microambiente tubular renal puede facilitar la concentración y la distribución del complejo pHLIP-PNA en este órgano. En este contexto hemos demostrado por primera vez que la administración dirigida de inhibidores de miR-33 con el sistema pHLIP previene eficazmente del desarrollo de fibrosis renal, abriendo las puertas de esta tecnología a nuevas estrategias de diagnóstico y tratamiento de enfermedades renales.

Miguel et al. Nefrologia. 2020;:. The pHLIP system as a vehicle for microRNAs in the kidney.

Esta versión de nuestra web ya no se mantiene actualizada.
Por favor, visite nuestra web operativa en
https://quibio.web.uah.es/group/
y actualice sus enlaces.
¡Gracias!

Publicaciones > Miguel et al

The pHLIP system as a vehicle for microRNAs in the kidney.

1. Programa de Procesos Fisiológicos y Patológicos, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, España. Electronic address:.  2. Programa de Procesos Fisiológicos y Patológicos, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, España.  3. Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química Andrés M. del Río (IQAR), Universidad de Alcalá, IRYCIS, Alcalá de Henares, Madrid, España.  4. Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, Estados Unidos.  5. Department of Medicine and Medical Specialties, Research Foundation of the University Hospital Príncipe de Asturias, IRYCIS, Alcalá University, Alcalá de Henares, Madrid, España.

avmiguel@cbm.csic.es

Resumen

MicroRNAs (miRNAs) are small endogenous RNAs that regulate gene expression through post-transcriptional repression of their target messenger RNAs. A study of changes in expression of certain miRNAs in the kidney has supplied evidence on their pathogenic role and therapeutic potential in nephrology. This review proposes a nanotechnology approach based on the binding of analogs or inhibitors of miRNAs formed by peptide nucleic acids (PNAs) to peptides with a transmembrane structure sensitive to a low pH, called pHLIPs (pH [low] insertion peptides). The review draws on the concept that an acidic pH in the microenvironment of the renal tubule may facilitate concentration and distribution of the pHLIP-PNA complex in this organ. In this context, we have demonstrated for the first time that targeted administration of miR-33 inhibitors with the pHLIP system effectively prevents the development of renal fibrosis, thus opening up this technology to new strategies for diagnosis and treatment of kidney diseases.

Nuevo artículo, Org Lett 09.2020

Esta versión de nuestra web ya no se mantiene actualizada.
Por favor, visite nuestra web operativa en
https://quibio.web.uah.es/group/
y actualice sus enlaces.
¡Gracias!
Selective Synthesis of Phenanthrenes and Dihydrophenanthrenes via Gold-Catalyzed Cycloisomerization of Biphenyl Embedded Trienynes

Ana Milián, Patricia García-García*, Adrián Pérez-Redondo, Roberto Sanz, Juan J. Vaquero, and Manuel A. Fernández-Rodríguez*

Org. Lett, 2020, ASAP
DOI: acs.orglett.0c03067

Highlighted as Cover Picture: link

Readily available o′-alkenyl-o-alkynylbiaryls, a particular type of 1,7-enynes, undergo a selective cycloisomerization reaction in the presence of a gold(I) catalyst to give interesting phenanthrene and dihydrophenanthrene derivatives in high yields. The solvent used provokes a switch in the evolution of the gold intermediate and plays a key role in the reaction outcome.

Guillermo Otarola

Esta versión de nuestra web ya no se mantiene actualizada.
Por favor, visite nuestra web operativa en
https://quibio.web.uah.es/group/
y actualice sus enlaces.
¡Gracias!

Guillermo Otarola

  • Contrato predoctoral FPI Universidad de Alcalá (2021-2024)
  • Contrato REDINREN, Universidad de Alcalá (2020)
  • Máster Interuniversitario en Descubrimiento de Fármacos en Universidad Complutense de Madrid (2019/2020)
  • Grado en Química por la Universidad de Alcalá (2019)

Publicaciones en el grupo

Visible-Light-Mediated Regioselective Chlorosulfonylation of Acrylamides.
Synthesis 2023, DOI: 10.1055/s-0042-1751424.
Gold-catalyzed endo-selective cyclization of alkynylcyclobutanecarboxamides: synthesis of cyclobutane-fused dihydropyridones.
Org Biomol Chem. 2023,21,2705-2708. doi: 10.1039/d3ob00051f.
Electrochemically driven one-pot oxidative conversion of arylhydrazines into aromatic iodides /
J. Environ. Chem. Eng. 2022; 10(3):107486.
Gold-Catalyzed Synthetic Strategies towards Four-Carbon Ring Systems.
Catalysts. 2020 Oct 8; 22(21):1178.
Expanding the BN-embedded PAH family: 4a-aza-12a-borachrysene.
Chem Commun (Camb). 2020 Mar 28;56(25):3669-3672. doi: 10.1039/c9cc09998k.

Nuevo artículo, ChemMedChem 09.2020

Esta versión de nuestra web ya no se mantiene actualizada.
Por favor, visite nuestra web operativa en
https://quibio.web.uah.es/group/
y actualice sus enlaces.
¡Gracias!
Pyrrolo[1,2‐a]quinoxalines: Insulin Mimetics that Exhibit Potent and Selective Inhibition against Protein Tyrosine Phosphatase 1B

Javier García‐Marín, Mercedes Griera, Patricia Sánchez‐Alonso, Bruno Di Geronimo, Francisco Mendicuti, Manuel Rodríguez‐Puyol*, Ramón Alajarín*, Beatriz de Pascual‐Teresa, Juan J. Vaquero*, Diego Rodríguez‐Puyol*

ChemMedChem, 2020, Early View
DOI: 10.1002/cmdc.202000446

Highlighted as Cover Picture: link

PTP1B dephosphorylates insulin receptor and substrates to modulate glucose metabolism. This enzyme is a validated therapeutic target for type 2 diabetes, but no current drug candidates have completed clinical trials. Pyrrolo[1,2‐a]quinoxalines substituted at positions C1–C4 and/or C7–C8 were found to be nontoxic to cells and good inhibitors in the low‐ to sub‐micromolar range, with the 4‐benzyl derivative being the most potent inhibitor (0.24 μm). Some analogues bearing chlorine atoms at C7 and/or C8 kept potency and showed good selectivity compared to TCPTP (selectivity index >40). The most potent inhibitors behaved as insulin mimetics by increasing glucose uptake. The 4‐benzyl derivative inhibited insulin receptor substrate 1 and AKT phosphorylation. Molecular docking and molecular dynamics simulations supported a putative binding mode for these compounds to the allosteric α3/α6/α7 pocket, but inconsistent results in enzyme inhibition kinetics were obtained due to the high tendency of these inhibitors to form stable aggregates. Computational calculations supported the druggability of inhibitors.

Altarejos et al. Eur. J. Org. Chem.. 2020;:. Practical Solvent-Free Microwave-Assisted Hydroboration of Alkynes.

Esta versión de nuestra web ya no se mantiene actualizada.
Por favor, visite nuestra web operativa en
https://quibio.web.uah.es/group/
y actualice sus enlaces.
¡Gracias!

Publicaciones > Altarejos et al

Practical Solvent-Free Microwave-Assisted Hydroboration of Alkynes.

Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, IRYCIS, 28805 Madrid, Alcalá de Henares, Spain.

Abstract

A simple and rapid protocol for the anti-Markovnikov hydroboration of alkynes assisted by microwave irradiation has been developed. Pinacolborane smoothly reacts with terminal alkynes to obtain (E)-alkenyl boronates in good yields and short reactions times in the absence of solvent. Further transformations on the carbon-boron bond of the adducts can be sequentially achieved without the need of purifying the alkenyl boronates.

Nuevo artículo, EurJOC 04.2020

Esta versión de nuestra web ya no se mantiene actualizada.
Por favor, visite nuestra web operativa en
https://quibio.web.uah.es/group/
y actualice sus enlaces.
¡Gracias!
Practical solvent‐free microwave‐assisted hydroboration of alkynes

Julia Altarejos, David Sucunza, Juan José Vaquero, Javier Carreras*

Eur. J. Org. Chem., 2020, Accepted Articles
DOI: 10.1002/ejoc.202000110

Highlighted in ChemistryViews: web, twitter, youtube

A simple and rapid protocol for the anti‐Markovnikov hydroboration of alkynes assisted by microwave irradiation has been developed. Pinacolborane smoothly reacts with terminal alkynes to obtain (E)‐alkenyl boronates in good yields and short reactions times in the absence of solvent. Further transformations on the carbon‐boron bond of the adducts can be sequentially achieved without the need of purifying the alkenyl boronates.

Abengozar et al. Chem Commun (Camb). 2020;56(25):3669-3672. Expanding the BN-embedded PAH family: 4a-aza-12a-borachrysene.

Esta versión de nuestra web ya no se mantiene actualizada.
Por favor, visite nuestra web operativa en
https://quibio.web.uah.es/group/
y actualice sus enlaces.
¡Gracias!

Publicaciones > Abengozar et al

Expanding the BN-embedded PAH family: 4a-aza-12a-borachrysene.

1. Departamento de Quimica Organica y Quimica Inorganica, Instituto de Investigacion Quimica Andres M. del Rio (IQAR), Universidad de Alcala, IRYCIS, 28805 Alcala de Henares, Spain.  2. Departamento de Quimica Analitica, Quimica Fisica e Ingenieria Quimica, Universidad de Alcala, Spain.

adavid.sucunza@uah.es; juanjose.vaquero@uah.es

Abstract

Previously unknown 4a-aza-12a-borachrysene has been synthesized in only four steps. The reactions of this BN-embedded PAH with bromine and organolithium compounds proceed with complete regioselectivity, resulting in the formation of nine derivatives. One of these, a phenylalkynyl-substituted derivative, exhibits a remarkably high fluorescence quantum yield (PhiF %@3D 0.68).

Nuevo artículo, ChemComm 03.2020

Esta versión de nuestra web ya no se mantiene actualizada.
Por favor, visite nuestra web operativa en
https://quibio.web.uah.es/group/
y actualice sus enlaces.
¡Gracias!
Expanding the BN-embedded PAH family: 4a-aza-12a-borachrysene

Alberto Abengózar,‡ Isabel Valencia,‡ Guillermo G. Otárola, David Sucunza,* Patricia García-García, Adrián Pérez-Redondo, Francisco Mendicuti and Juan J. Vaquero*

Chem. Commun., 2020, Advance Article
DOI: 10.1039/C9CC09998K

Previously unknown 4a-aza-12a-borachrysene has been synthesized in only four steps. The reactions of this BN-embedded PAH with bromine and organolithium compounds proceed with complete regioselectivity, resulting in the formation of nine derivatives. One of these, a phenylalkynyl-substituted derivative, exhibits a remarkably high fluorescence quantum yield (ΦF = 0.68).